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Introduction. In “Ray’s Solution” (7 November 2013, henceforth denoted [A]) I
provide an elaborated account of a method devised by Ray Mayer for
constructing an estimate of the expected position of a random walker on Z,
given that the next-step protocol is of a certain type. In “Analytic theory of
a Parrondo Game” (19 November 20123, henceforth denoted [B]) I attempt
to adapt an “improved version” of Ray’s Method to the more complicated
next-step protocol devised by J. Parrondo, but on page 10 hit a snag. Here
I use the methods of [B] to rehearse the argument of [A], in an effort to verify
that those methods do indeed work in that simpler context. For the most part
I adhere to the notational conventions of [B].

Setting the problem up. Picking up the argument at page 7 of [A], let

C =





0 y · · · · · · · · ·
Z 0 x · · · · · · · ·
· Y 0 z · · · · · · ·
· · X 0 y · · · · · ·
· · · Z 0 x · · · · ·
· · · · Y 0 z · · · ·
· · · · · X 0 y · · ·
· · · · · · Z 0 x · ·
· · · · · · · Y 0 z ·
· · · · · · · · X 0 y
· · · · · · · · · Z 0





be the central section of an ∞ -dimensional Markov matrix. Note the period-3
structure of C, and that the stochasticity of the columns entails X = 1−x, etc.
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Introduce basic period-3 vectors that are ∞ -dimensional extensions of

FFF 1 =





0
1
0
0
1
0
0
1
0





, FFF 2 =





1
0
0
1
0
0
1
0
0





, FFF 3 =





0
0
1
0
0
1
0
0
1





, FFF 0 =
3∑

k=1

FFF k =





1
1
1
1
1
1
1
1
1





and define

eee0 =





0
0
0
0
1
0
0
0
0





, www =





4
3
2
1
0

−1
−2
−3
−4





Our objective is to develop the structure of Sn(x, y, z) = (www, Cneee0), which
described the expected position—after n steps—of a walker who departs from
the origin. We have particular interest in the asymptotic structure of Sn(x, y, z).

Ray’s solution. Ray cleverly elects to work from

Sn(x, y, z) = (eee0, Dnwww) where D = C T

By computation

Dwww =





5y + 3Y
4x + 2X
3z + 1Z
2y + 0Y
1x − 1X
0z − 2Z

−1y − 3Y
−2x − 4X
−3z − 5Z





=





3 + 2y
2 + 2x
1 + 2z
0 + 2y

−1 + 2x
−2 + 2z
−3 + 2y
−4 + 2x
−5 + 2z





which can be written

Dwww = www+GGG1 (1)
GGG1 = (2x − 1)FFF 1 + (2y − 1)FFF 2 + (2z − 1)FFF 3

= f(x)FFF 1 + f(y)FFF 2 + f(z)FFF 3

≡ α1FFF 1 + β1FFF 2 + γ1FFF 3

with f(u) = 2u − 1 = u − (1 − u) = u − U . Iteration of (1) gives
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D www = www + GGG1

D2www = www + GGG1 + GGG2

D3www = www + GGG1 + GGG2 + GGG3

...
Dnwww = www + GGG1 + GGG2 + · · · + GGGn






(2)

where
GGGn = D GGGn−1 = Dn−1GGG1

Looking now to the explicit evaluation of the ∞ -dimensional GGG -vectors, we by
calculation have

DFFF 1 = Y FFF 2 + zFFF 3

DFFF 2 = xFFF 1 + ZFFF 3

DFFF 3 = XFFF 1 + yFFF 2

DFFF 1 = g1(x)FFF 1 + g2(y)FFF 2 + g3(z)FFF 3

DFFF 2 = g3(x)FFF 1 + g1(y)FFF 2 + g2(z)FFF 3

DFFF 3 = g2(x)FFF 1 + g3(y)FFF 2 + g1(z)FFF 3

where we note that the functions

g1(u) = 0 : abbreviated g1,u

g2(u) = U ≡ 1 − u : abbreviated g2,u

g3(u) = u : abbreviated g3,u

sum to unity. We now have

GGG2 = α2FFF 1 + β2FFF 2 + γ2FFF 3 = D GGG1 = α1 · {g1,xFFF 1 + g2,yFFF 2 + g3,zFFF 3}
+ β1 · {g3,xFFF 1 + g1,yFFF 2 + g2,zFFF 3}
+ γ1 · {g2,xFFF 1 + g3,yFFF 2 + g1,zFFF 3}

giving 


α2

β2

γ2



 = G




α1

β1

γ1



 with G =




g1,x g3,x g2,x

g2,y g1,y g3,y

g3,z g2,z g1,z





which is of the form
ggg2 = Gggg1

and implies gggn = Gn−1ggg1. Here gggn is a 3-vector, assembled from the coordinates
(with respect to the FFF -basis) of the ∞ -vector GGGn.

Ray recognized that, since ggg -space is 3-dimensional, it must be possible to
display every gggn as a linear combination of any linearly independent triplet, of
which {ggg1, ggg2, ggg3} is the most natural candidate. To accomplish that objective I
draw upon some fairly elegant trickery. More than fifty years ago I devised a way
to display the coefficients in the characteristic polynomial of any square matrix
M as algebraic functions of the traces of powers of M. In the 3-dimensional
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case we have1

det(M − λ I) =
3∑

n=0

1
n!Qn(−λ)3−n = 1

6Q3 − 1
2Q2λ + Q1λ

2 − Q0λ
3

where
Q0 = 1
Q1 = T1

Q2 = T 2
1 − T2

Q3 = T 3
1 − 3T1T2 + 2T3 = 6 det M

and Tk = tr Mk. It follows by the Cayley-Hamilton theorem that

M3 = 1
6Q3 I − 1

2Q2 M + Q1 M2

= 1
6

(
T 3

1 − 3T1T2 + 2T3

)
I − 1

2

(
T 2

1 − T2

)
M + T1 M2

≡ q1 I + q2 M + q3 M2

Returning with this result to the problem at hand (send M → G and multiply
the result into ggg1), we find

ggg4 = q1ggg1 + q2ggg2 + q3ggg3

In the present instance

G =




0 x 1 − x

1 − y 0 y
z 1 − z 0





(note that G T is manifestly Markovian) and Mathematica supplies

q1 = 1 − (x + y + z) + (xy + yz + zx) = det G ≡ σ

q2 = (x + y + z) − (xy + yz + zx) = 1 − det G
q3 = 0

Importance will attach in a moment to the fact that



q1

q2

q3



 =




σ

1−σ
0



 is stochastic

Returning with this information to (2), we have

1 For a recent account of the old material to which I allude, see “Algorithm
for the efficient evaluation of the trace of the inverse of a matrix” (1996), which
was written to resolve a problem posed by Richard Crandall.
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D www = www + GGG1

D2www = www + GGG1 + GGG2

D3www = www + GGG1 + GGG2 + GGG3

D4www = www + (1 + q1)GGG1 + (1 + q2)GGG2 + (1 + q3)GGG3

≡ www + a4GGG1 + b4GGG2 + c4GGG3

...
Dnwww = www + anGGG1 + bnGGG2 + cnGGG3

Dn+1www = www + GGG1 + cnq1GGG1 + (an + cnq2)GGG2 + (bn + cnq3)GGG3

= www + an+1GGG1 + bn+1GGG2 + cn+1GGG3






(3)

The coefficients {a, b, c} are seen to increment by the inhomogeneous rule



an+1

bn+1

cn+1



 =




0 0 q1

1 0 q2

0 1 q3








an

bn

cn



 +




1
0
0



 (4)

To reproduce (3) we set 


a1

b1

c1



 =




1
0
0





and by (4) obtain



a2

b2

c2



 =




1
1
0



 ,




a3

b3

c3



 =




1
1
1



 ,




a4

b4

c4



 =




1 + q1

1 + q2

1 + q3



 , . . .

Equation (4) is of the form

gggn+1 = Zgggn + ggg1 : Z =




0 0 q1

1 0 q2

0 1 q3



 , ggg1 =




1
0
0





which entails

ggg2 = Zggg1 + ggg1

ggg3 = Z(Zggg1 + ggg1) + ggg1

= (Z2 + Z1 + Z0)ggg1

...

gggn+1 =
n∑

k=0

Zk ggg1 (5)

By graphic analysis2 we establish that the functions qk(x, y, z)—which, as

2 Use commands of the form

Manipulate[Plot3D[f[x,y,z],{x,0,1},{y,0,1}],{z,0,1,0.1}]
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previously remarked, sum to unity—remain non-negative as the parameters
{x, y, z} range on [0, 1], so Z is Markovian. The spectrum of Z has therefore
the form

λ1 = 1

λ2(σ) = 1
2

(
− 1 +

√
1 − 4σ

)

λ3(σ) = 1
2

(
− 1 −

√
1 − 4σ

)





(6)

where λ2 and λ3—whether real or complex—have absolute values that are less
than unity, as shown in the following figure:

Figure 1 goes here

Figure 1: Graphs of the absolute values of λ2(σ) (red) and λ3(σ)
(blue) as σ ranges on [0, 1].

With the assistance of Mathematica we compute column vectors {uuu1, uuu2, uuu3}
that are right eigenvectors of Z

Z uuuk = λkuuuk

and row vectors {vvv1, vvv2, vvv3} that are left eigenvectors of Z (transposed right
eigenvectors of Z T)

vvvk Z = λkvvvk

We use those to construct3 matrices

Pk = uuuk vvvk

(vvvkuuuk)
: k = 1, 2, 3

which are demonstrably projective

P2
k = Pk : k = 1, 2, 3

3 See “Generalized spectral resolution and some of its applications”
(27 April 2009).
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orthogonal
PjPk = O : j &= k

and complete
P1 + P2 + P3 = I

and permit one to write

Z = λ1 P1 + λ2 P2 + λ3 P3

⇓
Zn = λn

1 P1 + λn
2 P2 + λn

3 P3

Mathematica supplies explicit descriptions of the P-matrices that can be written

P1 = D1
–1




σ σ σ
1 1 1
1 1 1





P2 = D2
–1




ξ + 1 − 2σ −(ξ + 1)σ 2σ2

2σ (ξ − 1)σ 1
2 (ξ − 1)2σ

−(ξ + 1) 2σ (ξ − 1)σ





P3 = D3
–1




ξ − 1 + 2σ −(ξ − 1)σ −2σ2

−2σ (ξ + 1)σ − 1
2 (ξ + 1)2σ

−(ξ − 1) −2σ (ξ + 1)σ





with4

ξ ≡
√

1 − 4σ

and
D1 ≡ 2 + σ

D2 ≡ ξ(1 + 2σ) − (4σ − 1)
D3 ≡ ξ(1 + 2σ) + (4σ − 1)





(7)

Returning with this information to (5), we have

aaan+1 =
{ n∑

k=0

λk
1 P1 +

n∑

k=0

λk
2 P2 +

n∑

k=0

λk
3 P3

}
aaa1 (8)

Typical low-order results

aaa5 =




1 + σ

2
2 − σ





aaa7 =




1 + 2σ
3 − σ2

3 − 2σ + σ2





aaa6 =




1 + 2σ − σ2

3 − 2σ + σ2

2





aaa8 =




1 + 3σ − 2σ2 + σ3

4 − 3σ + 3σ2 − σ3

3 − σ2





suggest that quite generally
∑

elements of aaan = n

4 In this notation λ2(σ) = +1
2 (ξ − 1), λ3(σ) = − 1

2 (ξ + 1).
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For large n we have

aaan+1 ∼
{

nP1 + 1
1 − λ2

P2 + 1
1 − λ3

P3

}
aaa1

=
{

nP1 + 2
3 − ξ

P2 + 2
3 + ξ

P3

}
aaa1

= n
2 + σ




σ
1
1



 + 1
(2 + σ)2




4 − σ
σ − 1
−3





giving



an+1

bn+1

cn+1



 ∼ D –1




(4 − σ) + n(2 + σ)σ
(σ − 1) + n(2 + σ)
( − 3) + n(2 + σ)



 (9)

where again σ = 1− (x+ y + z) + (xy + yz + zx) = xyz +XY Z and where now

D = (2 + σ)2 =
[
3 − (x + y + z) + (xy + yz + zx)

]2 (10)

Our objective—as posed by Ray and sharpened by (3)—is to evaluate

Sn(x, y, z) =
(
eee0, {www + anGGG1 + bnGGG2 + cnGGG3}

)
(11)

With the coefficients {an, bn, cn} now in hand, we look to the central elements
of the basic GGG -vectors {GGG1,GGG2,GGG3}. Working with Mathematica’s assistance
from

GGG1 = D www −www

GGG2 = D GGG1

GGG3 = D GGG2

we obtain

GGG1 =





...
−1 + 2z
−1 + 2y
−1 + 2x
−1 + 2z
−1 + 2y

...





, GGG2 =





...
−1 + 2y + 2z(x − y)
−1 + 2x + 2y(z − x)
−1 + 2z + 2x(y − z)
−1 + 2y + 2z(x − y)
−1 + 2x + 2y(z − x)

...
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GGG3 =





...
−1 + 2x − 2(xy − yz + zx) + 2z2(1 − x − y) + 4xyz
−1 + 2z − 2(zx − xy − yz) + 2y2(1 − z − x) + 4xyz
−1 + 2y − 2(yz − zx + xy) + 2x2(1 − y − z) + 4xyz
−1 + 2x − 2(xy − yz + zx) + 2z2(1 − x − y) + 4xyz
−1 + 2z − 2(zx − xy − yz) + 2y2(1 − z − x) + 4xyz

...





all of which are seen to be manifectly 3-periodic and to possess the property
that as one moves from element to next-higher element the variables {x, y, z}
advance in cyclic progression. These persistent patterns, inherited from the
structure of C, inspire confidence in the accuracy of our results, but because
of the special structure of the initial state eee0 it is only the central elements—
shown in blue—that are relevant to the construction of Sn(x, y, z). Returning
with (eee0,www) = 0 and

(eee0, G1) ≡ G10 = −1 + 2x

(eee0, G2) ≡ G20 = −1 + 2z + 2x(y − z)

(eee0, G3) ≡ G30 = −1 + 2y − 2(yz − zx + xy) + 2x2(1 − y − z) + 4xyz

(12)

to (11), we obtain finally

Sn(x, y, z) = (eee0, Dnwww) = anG10 + bnG20 + cnG30 (13.1)

with

aaan ≡




an

bn

cn



 =

{
nP1 +

n−1∑

k=0

λk
2 P2 +

n−1∑

k=0

λk
3 P3

} 


1
0
0



 (13.2)

where the σ that enters into the construction (6) of λ2(σ) and λ3(σ) was defined

σ = 1 − (x + y + z) + (xy + yz + zx) = xyz + XY Z

and where the projection matrices {P1, P2, P3} were defined on page 7. For
large n equations (13) give

Sn(x, y, z) ∼ nP(x, y, z) + Q(x, y, z) (14.1)

with
P(x, y, z) = D –1(2 + σ)

[
σG01 + G20 + G30

]

Q(x, y, z) = D –1
[
(4 − σ)G10 + (σ − 1)G20 − 3G30

] (14.2)

where
D = (2 + σ)2 =

[
3 − (x + y + z) + (xy + yz + zx)

]2

Accuracy checks, and some instances of “polynomial similarity.” We possess now
two distinct ways to approach the evaluation of Sn(x, y, z). The naive approach
(which I employed in some earlier Mathematica -based work) proceeds from

Sn(x, y, z) = (www, Cneee0)
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so involves raising large matrices5 to high powers. This works well enough
for small n, but at some point raising large matrices to high powers becomes
unfeasible. The method supplies

Sn(x, y, z) = homogeneous polynomial of degree n in {x, X, y, Y, z, Z}
= inhomogeneous polynomial of degree n in {x, y, z}

but provides no insight into the structure of those complicated polynomials.
Ray’s method, on the other hand, proceeds from

Sn(x, y, z) = (eee0, Dnwww) : D = C T

to formulae (13) that involve no matrix multiplication at all, that supply precise
results in every order and that yield quite a simple result (14) in asymptotic
approximation. Mathematica reports that the two methods produce identical
results

S4(x, y, z) = −4+4x+2y−2xy+2x2y+2xy2−2x2y2+2z−2x2z+4xyz−2xy2z

+2z2−4xz2+2x2z2−2yz2+2xyz2

S5(x, y, z) = −5+4x+2x3+2y+2xy−4x3y+2y2−4xy2+2x3y2+4z−4xz+4x2z

−4x3z+2xyz−2x2yz+4x3yz−4y2z+8xy2z−2x2y2z+2xz2−4x2z2

+2x3z2−2yz2+4xyz2−2x2yz2+2y2z2−4xy2z2

S6(x, y, z) = −6+4x+4x2−2x3+4y−8x2y+6x3y−2xy2+8x2y2−6x3y2+2xy3−4x2y3

+2x3y3+4z−6x2z+2x3z−4yz+8xyz+8x2yz−4x3yz+2y2z+2xy2z

−10x2y2z+2x3y2z−4xy3z+4x2y3z+2xz2−4x2z2+2x3z2+4yz2

−10xyz2+8x2yz2−2x3yz2−4y2z2+2xy2z2+2xy3z2+2z3−6xz3

+6x2z3−2x3z3−4yz3+8xyz3−4x2yz3+2y2z3−2xy2z3

S7(x, y, z) = −7+6x+2x2+4y−4xy+6x2y−6x4y+8xy2−14x2y2+6x4y2+2y3−8xy3

+8x2y3−2x4y3+4z−6x2z+8x3z−6x4z+8xyz+2x2yz−16x3yz

+12x4yz+2y2z−20xy2z+20x2y2z+8x3y2z−6x4y2z−6y3z+20xy3z

−14x2y3z+4z2−12xz2+18x2z2−16x3z2+6x4z2−6yz2+12xyz2

−16x2yz2+16x3yz2−6x4yz2−4y2z2+20xy2z2−18x2y2z2+6y3z2

−16xy3z2+6x2y3z2−2z3+8xz3−12x2z3+8x3z3−2x4z3+2yz3

−4xyz3+2x2yz3+2y2z3−8xy2z3+6x2y2z3−2y3z3+4xy3z3

through order n = 7. We expect to have

5 To avoid “boundary errors” in the naive evaluation of Sn(x, y, z) the ν × ν
matrix C must have dimension not less than 2n + 1. Working with ν = 15 I
could by that method ascend only to order 7, by which point my typographic
patience had already been pressed to its limit.
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Sn(0, 0, 0, 0) = −n

Sn( 1
2 , 1

2 , 1
2 , 1

2 ) = 0
Sn(1, 1, 1, 1) = +n

(15)

and are informed by Mathematica that each of the results reported above
conforms to that expectation. That the two methods yield results that—
increasing complicated though they rapidly become—are in precise agreement
through order 7, and that in those cases they conform to (15), is fairly
convincing evidence that our results are accurate.

In the asymptotic limit we by (14) have

Sn(x, y, z) ∼ Sn,∞(x, y, z) = nP(x, y, z) + Q(x, y, z) ∼ nP(x, y, z)

where
P(x, y, z) = D –1p where p(x, y, z) = (2 + σ)

[
σG10 + G20 + G30

]

Q(x, y, z) = D –1q where q(x, y, z) = (4 − σ)G10 + (σ − 1)G20 − 3G30

D(x, y, z) = (2 + σ)2

when spelled out in explicit detail read
p(x, y, z) = −9+12x−3x2+12y−18xy+6x2y−3y2+6xy2−3x2y2+12z−18xz+6x2z

−18yz+36xyz−12x2yz+6y2z−12xy2z+6x2y2z−3z2+6xz2−3x2z2

+6yz2−12xyz2+6x2yz2−3y2z2+6xy2z2

q(x, y, z) = 6x−4x2−6y+8xy+2x2y−2xy2+2x2y2−6xz+6x2z+4yz−12xyz

+2xy2z−2z2+4xz2−2x2z2+2yz2−2xyz2

D(x, y, z) = 9−6x+x2−6y+8xy−2x2y+y2−2xy2+x2y2−6z+8xz−2x2z+8yz

−6xyz+2x2yz−2y2z+2xy2z+z2−2xz2+x2z2−2yz2+2xyz2+y2z2

giving

Sn,∞(x, y, z) = n(5th order) + (4th order)
4th order

(16)

It is insructive to look to the special case x = y = z (i.e., to the simplest
unbalanced walk). In that case G10 = G20 = G30 = 2x − 1, σ = 1 − 3x + 3x2

and
p(x, x, x) = −9 + 36x − 63x2 + 72x3 − 45x4 + 18x5

q(x, x, x) = 0

D(x, x, x) = 9 − 18x + 27x2 − 18x3 + 9x4

from which it follows that

Sn,∞(x, x, x) = n(2x − 1) (17)

—exactly as one might have anticipated. For consider an ensemble of walkers,
each of whom advances one step with probability x, retreats one step with
probability X = 1 − x. The mean single-step advance is

S1(x) = x − X = 2x − 1

so the mean n -step advance is

Sn(x) = nS1(x) = n(2n − 1)



12 Testing effectiveness of an analytical technique

—in precise agreement with (17). The asymptotic formula has in this instance
been found to be exact for all n.

Walkers who advance by the simple site-independent rule just considered
can expect to “break even” (make no net n -step progress) if Sn(x) = 0, which
entails x = 1

2 . The n -step beak-even conditions for walkers who advance by the
site-dependent rule Cx,y,z read

Sn(x, y, z) = 0 (18)

—each of which inscribes a “null surface” within the unit cube in {x, y, z}-space.
When plotted,6 those surfaces are found to resemble one another ever more
closely as n ascends, and for n greater than about 10 to become virtually
indistinguishable from the surface defined

Sn,∞(x, y, z) ∼ nP(x, y, z) = 0

Which is a little perplexing, since the multinomials Sn(x, y, z)—of ascending
high order—do not at all resemble one another, and P(x, y, z) is a ratio of low
order multinomials. The mystery would disappear if it were the case that

Sn+1(x, y, z) = Sn(x, y, z) + higher order terms

but that is manifestly not the case. I will return later to discussion of that
“polynomial similarity problem.”

Parrondo’s paradoxical game. Juan Parrondo’s discovery derives from his
interest in “Brownian ratchets,” Smoluchowski’s realization—popularized by
Feynman—of Maxwell’s Demon, but as a matter of expository convenience
adopted game-theoretic language when he first reported his paradoxical result.7
I continue in that tradition.

Player A, who by flip of a loaded coin places a penny on the table with
probability x, removes a penny with probability X = 1−x. Player A, as recently
remarked, can expect to break even if x = 1

2 . Parrondo’s player B uses one or
the other of two coins, depending upon whether or not the money on the table
is 2 mod 3. When that is the case player B deposits a penny with probability z
(withdraws one with probability Z = 1 − z), but in all other cases he deposits
with probability y, withdraws with probability Y = 1− y. To discover his long
term prospects, we return to (14) and set x = y; we look, in other words, to

6 In Mathematica v7 use the command
ContourPlot3D[Sn(x, y, z) == 0, {x, 0, 1}, {y, 0, 1}, {z, 0, 1}]

Such figures are supplied in a companion notebook.
7 The seminal document is a slide entitled “How to cheat a bad

mathematician” that he used to illustrate a lecture entitled “Efficiency of
Brownian motors” which he presented at a Complexity and Chaos Workshop
that took place in Torino, Italy in July, 1996. See his homepage at

http://seneca.fis.ucm.es/parr/
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P(y, y, z) = 0 (19)

where
P(y, y, z) = D –1

{
− 9 + 24y − 24y2 + 12y3 − 3y4 + 12z − 36yz + 48y2z

− 24y3z + 6y4z − 3z2 + 12yz2 − 18y2z2 + 12y3z2
}

D = 9 − 12y + 10y2 − 4y3 + y4 − 6z + 16yz − 10y2z

− 10y2z + 4y3z + z2 − 4yz2 + 4y2z2

The asymptotic break-even condition (18) inscribes “null curve” within the unit
square in {y, z}-space: see the following figure:

Figure 2 goes here

Figure 2: The null curve derived from setting P(y, y, z) = 0. The
B player wins only if {y, z} falls above the curve. In the figure,
y ∈ [0, 1] runs →, z ∈ [0, 1] runs ↑.

Suppose now that players A and B move (deposit or withdraw pennies)
alternately. Player A’s move is generated by

A = Ca,a,a

while player B’s move is generated by

B = Cy,y,z

The composite result of such a pair of moves is generated by S = AB (which is
Markovian since all products of Markov matrices are Marcovian). Coincidences
(such as x = y) tend to obscure patterns, so we look to the more general
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4-parameter case that results from setting B = Cx,y,z and will set x = y only
at the end of the argument.

Looking only to the illustrative central secti of a 15-dimensional S-matrix,
we have

S =





· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · az 0 0 0 0 · · ·
· · · 0 ay 0 0 0 · · ·
· · · Az + aZ 0 ax 0 0 · · ·
· · · 0 Ay + aY 0 az 0 · · ·
· · · AZ 0 Ax + aX 0 ay · · ·
· · · 0 AY 0 Az + aZ 0 · · ·
· · · 0 0 AX 0 Ay + aY · · ·
· · · 0 0 0 AZ 0 · · ·
· · · 0 0 0 0 AY · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·
· · · 0 0 0 0 0 · · ·





We verify that the column elements sum to unity, and note the 3-periodicity
of S. The matrices A and B refer to nearest-neighbor walks with stand-in-place
excluded, so have 0 on their diagonals. But with a second step such a walker
can return to place, which accounts for the non-zero elements on the diagonal
of S. By computation

T www = www + 2(a + x − 1)FFF 1

+ 2(a + y − 1)FFF 2

+ 2(a + z − 1)FFF 3

: T = S T

and
TFFF 1 = (Ax + aX)FFF 1 + ayFFF 2 + AZFFF 3

TFFF 2 = AXFFF 1 + (Ay + aY )FFF 2 + azFFF 3

TFFF 3 = axFFF 1 + AY FFF 2 + (Az + aZ)FFF 3

which in notation that mimics that of pages 2 and 3 become

T www = www +GGG1

GGG1 = f(x)FFF 1 + f(y)FFF 2 + f(z)FFF 3

= α1FFF 1 + β1FFF 2 + γ1FFF 3

with f(u) = 2(a + u − 1) = (a − A) + (u − U) and
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TFFF 1 = g1(x)FFF 1 + g2(y)FFF 2 + g3(z)FFF 3

TFFF 2 = g3(x)FFF 1 + g1(y)FFF 2 + g2(z)FFF 3

TFFF 3 = g2(x)FFF 1 + g3(y)FFF 2 + g1(z)FFF 3

where
g1(u) = a + u − 2au : abbreviated g1,u

g2(u) = au : abbreviated g2,u

g3(u) = 1 − a − u + au : abbreviated g3,u

are seen to sum to unity.

We are led now as we were on pages 3–5 (except that our symbols bear
now different meanings) to write

GGG2 = α2FFF 1 + β2FFF 2 + γ2FFF 3 = T GGG1 = α1 · {g1,xFFF 1 + g2,yFFF 2 + g3,zFFF 3}
+ β1 · {g3,xFFF 1 + g1,yFFF 2 + g2,zFFF 3}
+ γ1 · {g2,xFFF 1 + g3,yFFF 2 + g1,zFFF 3}

giving 


α2

β2

γ2



 = G




α1

β1

γ1



 with G =




g1,x g3,x g2,x

g2,y g1,y g3,y

g3,z g2,z g1,z





so again the F-coordinates of the ∞ -dimensional G-vectors increment by the
rule

ggg2 = Gggg1 =⇒ gggn = Gn−1ggg1

The matrix G is 3 × 3, so again we have

G3 = 1
6

(
T 3

1 − 3T1T2 + 2T3

)
I − 1

2

(
T 2

1 − T2

)
G + T1 G2

≡ q1 I + q2 G + q3 G2

where by computation the coefficients are given now by

q1 =
[
1 − 3a + 3a2

][
1 − (x + y + z) + (xy + yz + zx)

]

q2 = 1 − q1 − q3

q3 = 3a − (2a − 1)(x + y + z)

which clearly sum to unity. Finally, we have

gggn+1 =
n∑

k=0

Zk ggg1 with Z =




0 0 q1

1 0 q2

0 1 q3



, ggg1




1
0
0





by precisely the argument which gave (5), but with this important difference:
the matrix Z is not Markovian because its third column is not stochastic. Its
elements sum to unity, but do not all fall within the unit interval. I have been
unable to develop a clean analytical demonstration of the latter point, but can
supply persuasive statistical evidence. Assigning random unit interval values
to {a, x, y, z} I found after 100 trials that in every instance q1 ∈ [0, 1],8 q2 < 0

8 In this instance the analytical demonstration is elementary.
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and q3 > 1. Looking to the statistics of 10,000 such trials, I found

mean q1 = 0.125 , ∆q1 = 0.097
mean q2 = −0.624 , ∆q2 = 0.305
mean q3 = 1.498 , ∆q1 = 0.288

0.999

So Z is non-Markovian. But—surprisingly/fortunately—the spectral properties
of Z do mimic those of a Markov matrix: examination of 100 randomized trials
showed that (i) in every case the leading eigenvalue was unity; (ii) in every
case |λ2| < 1 and |λ3| < 1; (iii) in about 40% of cases λ2 and λ3 were both real
(and in all other cases complex conjugates of one another).

If we sought exact description of Sn(a, x, y, z) we would have to construct
an exact evaluation of Zn−1, so would at this point undertake to produce the
spectral decomposition of Z. But we have interest only in the form assumed
by Sn(a, x, y, z) when n is sufficiently large we can spare ourselves that labor,
exploiting what we know about the spectrum of Z to write

Zn−1 ∼ nP1

where projects onto the leading eigenvector of Z:

hhh = 1
2 + q1 − q3




q1

1 − q3

1



 ≡




h1

h2

h3



 : h1 + h2 + h3 = 1

We then have9

lim
n→∞

Znhhh0 = hhh : all stochastic hhh0

from which it follows in particular that in asymptotic approximation

gggn = nhhh

9 These results are stranger than they appear, as I demonstrate: one random
parameter assignment produced

Z =




0 0 0.52701
1 0 −1.98017
0 1 2.45309





which gives

Z50




1
0
0



 =




7.1248

−19.6424
13.5176



 ≡ hhh50 ≈ hhh =




7.1248

−19.6425
13.5177





The vector hhh50 is clearly not stochastic, though its elements do sum to 1.0000.
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We conclude that in asymptotic approximation

Sn(a, x, y, z) = n P(a, x, y, z)
P(a, x, y, z) = h1G10 + h2G20 + h3G30

where by calculation (see again pages 8–9)

G10 = −2+2a+2x

G20 =−6+6a+4x+2ax+2x2−4ax2+2y−2ay−2xy+2axy+2axz

G30 =−10+10a+4x+4ax+2a2x+4x2−2ax2−10a2x2+2x3−8ax3+8a2x3+4y−4a2y

−2xy−4axy+6a2xy−2x2y+4ax2y−2a2x2y+2y2−6ay2+4a2y2−2xy2+6axy2

−4a2xy2+2z−4az+2a2z−2xz+8axz+2a2xz−2a2x2z−2yz+4ayz−2a2yz

+2xyz−4axyz+4a2xyz+2axz2−4a2xz2

Writing
h1 = D –1k1 with k1 = q1

h2 = D –1k2 with k2 = 1 − q3

h3 = D –1k3 with k3 = 1

we have finally

P(a, x, y, z) =D –1
[
k1G10 + k2G20 + k3G30

]
≡ D –1R(a, x, y, z)

D = 2 + q1 − q3

The equation R(a, x, y, z) = 0 inscribes a null hypersurface within the
4-cube, of which we can only plot 3-dimensional sections at (say) selected values
of a. Parrondo, however, restricts his interest to the special case that results
from setting x = y, and the surface R(a, y, y, z) = 0 does admit of graphic
display. In that case the relevant expressions are, in fact, fairly easy to write
out; we find

R(a, y, y, z) = −18+42a−30a2+6a3+32y−72ay+52a2y−12a3y−14y2+30ay2

−18a2y2+6a3y2+10z−30az+26a2z−6a3z−16yz+48ayz−36a2yz

+12a3yz+6y2z−18ay2z+18a2y2z

D(a, y, y, z) = 2−6a+3a2−4y+10ay−6a2y+y2−3ay2+3a2y2

−2z+5az−3a2z+2yz−6ayz+6a2yz

which are again multinomials of orders 5 and 3, respectively.
The naive construction of Sn(a, z, y, z) requires—if boundary errors are to

be avoided—that S ≡ AB be ν × ν with ν ! 4n + 1. The S of page 14 supplies

(www, Sneee0) =
{

homogeneous multinomial of degree 2n
in {a, x, y, z, A, X, Y, Z}
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Replacements of the form U → 1 − u produce

Sn(a, x, y, z) =
{

inhomogeneous multinomial of degree " 2n
in {a, x, y, z}

To ascend to order 7 I set ν = (4 ·7+1) = 29, whereupon Mathematica supplied

S7(a, x, y, z) = inhomogeneous sum of 741 terms
S7(a, y, y, z) = inhomogeneous sum of 230 terms

and also
S7(0, 0, 0, 0) = −14
S7( 1

2 , 1
2 , 1

2 , 1
2 ) = 0

S7(1, 1, 1, 1) = +14

. . .which (compare (15)) make intuitive good sense: a walker who with certainty
advances/retreats one step with every step of a composite 2-step move can
expect to advance/retreat 14 steps in seven such moves, and to make no progress
at all if the probabilities of advancing/retreating are at every step equal.


