# Testing Effectiveness of a Method 

Nicholas Wheeler<br>24 November 2013

Introduction. In "Ray's Solution" (7 November 2013, henceforth denoted [A]) I provide an elaborated account of a method devised by Ray Mayer for constructing an estimate of the expected position of a random walker on $\mathbb{Z}$, given that the next-step protocol is of a certain type. In "Analytic theory of a Parrondo Game" (19 November 20123, henceforth denoted [B]) I attempt to adapt an "improved version" of Ray's Method to the more complicated next-step protocol devised by J. Parrondo, but on page 10 hit a snag. Here I use the methods of [B] to rehearse the argument of [A], in an effort to verify that those methods do indeed work in that simpler context. For the most part I adhere to the notational conventions of $[B]$.

Setting the problem up. Picking up the argument at page 7 of $[\mathrm{A}]$, let

$$
\mathbb{C}=\left(\begin{array}{ccccccccccc}
0 & y & . & . & . & . & . & . & . & . & . \\
Z & 0 & x & . & . & . & . & . & . & . & . \\
. & Y & 0 & z & . & . & . & . & . & . & . \\
. & . & X & 0 & y & . & . & . & . & . & . \\
. & . & . & Z & 0 & x & . & . & . & . & . \\
. & . & . & . & Y & 0 & z & . & . & . & . \\
. & . & . & . & . & X & 0 & y & . & . & . \\
. & . & . & . & . & . & Z & 0 & x & . & . \\
. & . & . & . & . & . & . & Y & 0 & z & . \\
. & . & . & . & . & . & . & . & X & 0 & y \\
. & . & . & . & . & . & . & . & . & Z & 0
\end{array}\right)
$$

be the central section of an $\infty$-dimensional Markov matrix. Note the period-3 structure of $\mathbb{C}$, and that the stochasticity of the columns entails $X=1-x$, etc.

Introduce basic period- 3 vectors that are $\infty$-dimensional extensions of

$$
\boldsymbol{F}_{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
1 \\
0 \\
0 \\
1 \\
0
\end{array}\right), \quad \boldsymbol{F}_{2}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right), \quad \boldsymbol{F}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
1 \\
0 \\
0 \\
1
\end{array}\right), \quad \boldsymbol{F}_{0}=\sum_{k=1}^{3} \boldsymbol{F}_{k}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

and define

$$
\boldsymbol{e}_{0}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad \boldsymbol{w}=\left(\begin{array}{r}
4 \\
3 \\
2 \\
1 \\
0 \\
-1 \\
-2 \\
-3 \\
-4
\end{array}\right)
$$

Our objective is to develop the structure of $S_{n}(x, y, z)=\left(\boldsymbol{w}, \mathbb{C}^{n} \boldsymbol{e}_{0}\right)$, which described the expected position-after $n$ steps-of a walker who departs from the origin. We have particular interest in the asymptotic structure of $S_{n}(x, y, z)$.

Ray's solution. Ray cleverly elects to work from

$$
S_{n}(x, y, z)=\left(\boldsymbol{e}_{0}, \mathbb{D}^{n} \boldsymbol{w}\right) \quad \text { where } \quad \mathbb{D}=\mathbb{C}^{\top}
$$

By computation

$$
\mathbb{D} \boldsymbol{w}=\left(\begin{array}{r}
5 y+3 Y \\
4 x+2 X \\
3 z+1 Z \\
2 y+0 Y \\
1 x-1 X \\
0 z-2 Z \\
-1 y-3 Y \\
-2 x-4 X \\
-3 z-5 Z
\end{array}\right)=\left(\begin{array}{r}
3+2 y \\
2+2 x \\
1+2 z \\
0+2 y \\
-1+2 x \\
-2+2 z \\
-3+2 y \\
-4+2 x \\
-5+2 z
\end{array}\right)
$$

which can be written

$$
\begin{align*}
\mathbb{D} \boldsymbol{w}=\boldsymbol{w}+\boldsymbol{G}_{1} &  \tag{1}\\
\boldsymbol{G}_{1} & =(2 x-1) \boldsymbol{F}_{1}+(2 y-1) \boldsymbol{F}_{2}+(2 z-1) \boldsymbol{F}_{3} \\
& =f(x) \boldsymbol{F}_{1}+f(y) \boldsymbol{F}_{2}+f(z) \boldsymbol{F}_{3} \\
& \equiv \alpha_{1} \boldsymbol{F}_{1}+\beta_{1} \boldsymbol{F}_{2}+\gamma_{1} \boldsymbol{F}_{3}
\end{align*}
$$

with $f(u)=2 u-1=u-(1-u)=u-U$. Iteration of (1) gives

$$
\begin{align*}
\mathbb{D} \boldsymbol{w} & =\boldsymbol{w}+\boldsymbol{G}_{1} \\
\mathbb{D}^{2} \boldsymbol{w} & =\boldsymbol{w}+\boldsymbol{G}_{1}+\boldsymbol{G}_{2} \\
\mathbb{D}^{3} \boldsymbol{w} & =\boldsymbol{w}+\boldsymbol{G}_{1}+\boldsymbol{G}_{2}+\boldsymbol{G}_{3}  \tag{2}\\
& \vdots \\
& \\
\mathbb{D}^{n} \boldsymbol{w} & =\boldsymbol{w}+\boldsymbol{G}_{1}+\boldsymbol{G}_{2}+\cdots+\boldsymbol{G}_{n}
\end{align*}
$$

where

$$
\boldsymbol{G}_{n}=\mathbb{D} \boldsymbol{G}_{n-1}=\mathbb{D}^{n-1} \boldsymbol{G}_{1}
$$

Looking now to the explicit evaluation of the $\infty$-dimensional $\boldsymbol{G}$-vectors, we by calculation have

$$
\begin{aligned}
& \mathbb{D} \boldsymbol{F}_{1}=\quad Y \boldsymbol{F}_{2}+z \boldsymbol{F}_{3} \mathbb{D} \boldsymbol{F}_{1}=g_{1}(x) \boldsymbol{F}_{1}+g_{2}(y) \boldsymbol{F}_{2}+g_{3}(z) \boldsymbol{F}_{3} \\
& \mathbb{D} \boldsymbol{F}_{2}=x \boldsymbol{F}_{1}+Z \boldsymbol{F}_{3} \mathbb{D} \boldsymbol{F}_{2}=g_{3}(x) \boldsymbol{F}_{1}+g_{1}(y) \boldsymbol{F}_{2}+g_{2}(z) \boldsymbol{F}_{3} \\
& \mathbb{D} \boldsymbol{F}_{3}=X \boldsymbol{F}_{1}+y \boldsymbol{F}_{2} \quad \mathbb{D} \boldsymbol{F}_{3}=g_{2}(x) \boldsymbol{F}_{1}+g_{3}(y) \boldsymbol{F}_{2}+g_{1}(z) \boldsymbol{F}_{3}
\end{aligned}
$$

where we note that the functions

$$
\begin{array}{ll}
g_{1}(u)=0 & : \quad \text { abbreviated } g_{1, u} \\
g_{2}(u)=U \equiv 1-u & : \quad \text { abbreviated } g_{2, u} \\
g_{3}(u)=u & : \quad \text { abbreviated } g_{3, u}
\end{array}
$$

sum to unity. We now have

$$
\begin{aligned}
\boldsymbol{G}_{2}=\alpha_{2} \boldsymbol{F}_{1}+\beta_{2} \boldsymbol{F}_{2}+\gamma_{2} \boldsymbol{F}_{3}=\mathbb{D} \boldsymbol{G}_{1}= & \alpha_{1} \cdot\left\{g_{1, x} \boldsymbol{F}_{1}+g_{2, y} \boldsymbol{F}_{2}+g_{3, z} \boldsymbol{F}_{3}\right\} \\
& +\beta_{1} \cdot\left\{g_{3, x} \boldsymbol{F}_{1}+g_{1, y} \boldsymbol{F}_{2}+g_{2, z} \boldsymbol{F}_{3}\right\} \\
& +\gamma_{1} \cdot\left\{g_{2, x} \boldsymbol{F}_{1}+g_{3, y} \boldsymbol{F}_{2}+g_{1, z} \boldsymbol{F}_{3}\right\}
\end{aligned}
$$

giving

$$
\left(\begin{array}{l}
\alpha_{2} \\
\beta_{2} \\
\gamma_{2}
\end{array}\right)=\mathbb{G}\left(\begin{array}{c}
\alpha_{1} \\
\beta_{1} \\
\gamma_{1}
\end{array}\right) \quad \text { with } \quad \mathbb{G}=\left(\begin{array}{lll}
g_{1, x} & g_{3, x} & g_{2, x} \\
g_{2, y} & g_{1, y} & g_{3, y} \\
g_{3, z} & g_{2, z} & g_{1, z}
\end{array}\right)
$$

which is of the form

$$
\boldsymbol{g}_{2}=\mathbb{G} \boldsymbol{g}_{1}
$$

and implies $\boldsymbol{g}_{n}=\mathbb{G}^{n-1} \boldsymbol{g}_{1}$. Here $\boldsymbol{g}_{n}$ is a 3 -vector, assembled from the coordinates (with respect to the $\boldsymbol{F}$-basis) of the $\infty$-vector $\boldsymbol{G}_{n}$.

Ray recognized that, since $\boldsymbol{g}$-space is 3 -dimensional, it must be possible to display every $\boldsymbol{g}_{n}$ as a linear combination of any linearly independent triplet, of which $\left\{\boldsymbol{g}_{1}, \boldsymbol{g}_{2}, \boldsymbol{g}_{3}\right\}$ is the most natural candidate. To accomplish that objective I draw upon some fairly elegant trickery. More than fifty years ago I devised a way to display the coefficients in the characteristic polynomial of any square matrix $\mathbb{M}$ as algebraic functions of the traces of powers of $\mathbb{M}$. In the 3-dimensional
case we have ${ }^{1}$

$$
\operatorname{det}(\mathbb{M}-\lambda \mathbb{I})=\sum_{n=0}^{3} \frac{1}{n!} Q_{n}(-\lambda)^{3-n}=\frac{1}{6} Q_{3}-\frac{1}{2} Q_{2} \lambda+Q_{1} \lambda^{2}-Q_{0} \lambda^{3}
$$

where

$$
\begin{aligned}
& Q_{0}=1 \\
& Q_{1}=T_{1} \\
& Q_{2}=T_{1}^{2}-T_{2} \\
& Q_{3}=T_{1}^{3}-3 T_{1} T_{2}+2 T_{3}=6 \operatorname{det} \mathbb{M}
\end{aligned}
$$

and $T_{k}=\operatorname{tr} \mathbb{M}^{k}$. It follows by the Cayley-Hamilton theorem that

$$
\begin{aligned}
\mathbb{M}^{3} & =\frac{1}{6} Q_{3} \mathbb{I}-\frac{1}{2} Q_{2} \mathbb{M}+Q_{1} \mathbb{M}^{2} \\
& =\frac{1}{6}\left(T_{1}^{3}-3 T_{1} T_{2}+2 T_{3}\right) \mathbb{I}-\frac{1}{2}\left(T_{1}^{2}-T_{2}\right) \mathbb{M}+T_{1} \mathbb{M}^{2} \\
& \equiv q_{1} \mathbb{I}+q_{2} \mathbb{M}+q_{3} \mathbb{M}^{2}
\end{aligned}
$$

Returning with this result to the problem at hand (send $\mathbb{M} \rightarrow \mathbb{G}$ and multiply the result into $\boldsymbol{g}_{1}$ ), we find

$$
\boldsymbol{g}_{4}=q_{1} \boldsymbol{g}_{1}+q_{2} \boldsymbol{g}_{2}+q_{3} \boldsymbol{g}_{3}
$$

In the present instance

$$
\mathbb{G}=\left(\begin{array}{ccc}
0 & x & 1-x \\
1-y & 0 & y \\
z & 1-z & 0
\end{array}\right)
$$

(note that $\mathbb{G}^{\top}$ is manifestly Markovian) and Mathematica supplies

$$
\begin{aligned}
& q_{1}=1-(x+y+z)+(x y+y z+z x)=\quad \operatorname{det} \mathbb{G} \equiv \sigma \\
& q_{2}=\quad(x+y+z)-(x y+y z+z x)=1-\operatorname{det} \mathbb{G} \\
& q_{3}=0
\end{aligned}
$$

Importance will attach in a moment to the fact that

$$
\left(\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3}
\end{array}\right)=\left(\begin{array}{c}
\sigma \\
1-\sigma \\
0
\end{array}\right) \quad \text { is stochastic }
$$

Returning with this information to (2), we have

[^0]\[

$$
\begin{align*}
\mathbb{D} \boldsymbol{w} & =\boldsymbol{w}+\boldsymbol{G}_{1} \\
\mathbb{D}^{2} \boldsymbol{w} & =\boldsymbol{w}+\boldsymbol{G}_{1}+\boldsymbol{G}_{2} \\
\mathbb{D}^{3} \boldsymbol{w} & =\boldsymbol{w}+\boldsymbol{G}_{1}+\boldsymbol{G}_{2}+\boldsymbol{G}_{3} \\
\mathbb{D}^{4} \boldsymbol{w} & =\boldsymbol{w}+\left(1+q_{1}\right) \boldsymbol{G}_{1}+\left(1+q_{2}\right) \boldsymbol{G}_{2}+\left(1+q_{3}\right) \boldsymbol{G}_{3} \\
& \equiv \boldsymbol{w}+a_{4} \boldsymbol{G}_{1}+b_{4} \boldsymbol{G}_{2}+c_{4} \boldsymbol{G}_{3}  \tag{3}\\
& \vdots \\
\mathbb{D}^{n} \boldsymbol{w} & =\boldsymbol{w}+a_{n} \boldsymbol{G}_{1}+b_{n} \boldsymbol{G}_{2}+c_{n} \boldsymbol{G}_{3} \\
\mathbb{D}^{n+1} \boldsymbol{w} & =\boldsymbol{w}+\boldsymbol{G}_{1}+c_{n} q_{1} \boldsymbol{G}_{1}+\left(a_{n}+c_{n} q_{2}\right) \boldsymbol{G}_{2}+\left(b_{n}+c_{n} q_{3}\right) \boldsymbol{G}_{3} \\
& =\boldsymbol{w}+a_{n+1} \boldsymbol{G}_{1}+b_{n+1} \boldsymbol{G}_{2}+c_{n+1} \boldsymbol{G}_{3}
\end{align*}
$$
\]

The coefficients $\{a, b, c\}$ are seen to increment by the inhomogeneous rule

$$
\left(\begin{array}{c}
a_{n+1}  \tag{4}\\
b_{n+1} \\
c_{n+1}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & q_{1} \\
1 & 0 & q_{2} \\
0 & 1 & q_{3}
\end{array}\right)\left(\begin{array}{l}
a_{n} \\
b_{n} \\
c_{n}
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

To reproduce (3) we set

$$
\left(\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

and by (4) obtain

$$
\left(\begin{array}{l}
a_{2} \\
b_{2} \\
c_{2}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
a_{3} \\
b_{3} \\
c_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad\left(\begin{array}{l}
a_{4} \\
b_{4} \\
c_{4}
\end{array}\right)=\left(\begin{array}{l}
1+q_{1} \\
1+q_{2} \\
1+q_{3}
\end{array}\right), \quad \ldots
$$

Equation (4) is of the form

$$
\boldsymbol{g}_{n+1}=\mathbb{Z} \boldsymbol{g}_{n}+\boldsymbol{g}_{1} \quad: \quad \mathbb{Z}=\left(\begin{array}{lll}
0 & 0 & q_{1} \\
1 & 0 & q_{2} \\
0 & 1 & q_{3}
\end{array}\right), \quad \boldsymbol{g}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

which entails

$$
\begin{align*}
\boldsymbol{g}_{2} & =\mathbb{Z} \boldsymbol{g}_{1}+\boldsymbol{g}_{1} \\
\boldsymbol{g}_{3} & =\mathbb{Z}\left(\mathbb{Z} \boldsymbol{g}_{1}+\boldsymbol{g}_{1}\right)+\boldsymbol{g}_{1} \\
& =\left(\mathbb{Z}^{2}+\mathbb{Z}^{1}+\mathbb{Z}^{0}\right) \boldsymbol{g}_{1} \\
& \vdots \\
\boldsymbol{g}_{n+1} & =\sum_{k=0}^{n} \mathbb{Z}^{k} \boldsymbol{g}_{1} \tag{5}
\end{align*}
$$

By graphic analysis ${ }^{2}$ we establish that the functions $q_{k}(x, y, z)$-which, as

[^1]previously remarked, sum to unity-remain non-negative as the parameters $\{x, y, z\}$ range on $[0,1]$, so $\mathbb{Z}$ is Markovian. The spectrum of $\mathbb{Z}$ has therefore the form
\[

\left.$$
\begin{array}{rl}
\lambda_{1} & =1  \tag{6}\\
\lambda_{2}(\sigma) & =\frac{1}{2}(-1+\sqrt{1-4 \sigma}) \\
\lambda_{3}(\sigma) & =\frac{1}{2}(-1-\sqrt{1-4 \sigma})
\end{array}
$$\right\}
\]

where $\lambda_{2}$ and $\lambda_{3}$ —whether real or complex—have absolute values that are less than unity, as shown in the following figure:


Figure 1: Graphs of the absolute values of $\lambda_{2}(\sigma)(r e d)$ and $\lambda_{3}(\sigma)$ (blue) as $\sigma$ ranges on $[0,1]$.

With the assistance of Mathematica we compute column vectors $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \boldsymbol{u}_{3}\right\}$ that are right eigenvectors of $\mathbb{Z}$

$$
\mathbb{Z} \boldsymbol{u}_{k}=\lambda_{k} \boldsymbol{u}_{k}
$$

and row vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ that are left eigenvectors of $\mathbb{Z}$ (transposed right eigenvectors of $\mathbb{Z}^{\top}$ )

$$
\boldsymbol{v}_{k} \mathbb{Z}=\lambda_{k} \boldsymbol{v}_{k}
$$

We use those to construct ${ }^{3}$ matrices

$$
\mathbb{P}_{k}=\frac{\boldsymbol{u}_{k} \boldsymbol{v}_{k}}{\left(\boldsymbol{v}_{k} \boldsymbol{u}_{k}\right)} \quad: \quad k=1,2,3
$$

which are demonstrably projective

$$
\mathbb{P}_{k}^{2}=\mathbb{P}_{k} \quad: \quad k=1,2,3
$$

[^2]orthogonal
$$
\mathbb{P}_{j} \mathbb{P}_{k}=\mathbb{O} \quad: \quad j \neq k
$$
and complete
$$
\mathbb{P}_{1}+\mathbb{P}_{2}+\mathbb{P}_{3}=\mathbb{I}
$$
and permit one to write
\[

$$
\begin{aligned}
& \mathbb{Z}=\lambda_{1} \mathbb{P}_{1}+\lambda_{2} \mathbb{P}_{2}+\lambda_{3} \mathbb{P}_{3} \\
& \quad \Downarrow \\
& \mathbb{Z}^{n}=\lambda_{1}^{n} \mathbb{P}_{1}+\lambda_{2}^{n} \mathbb{P}_{2}+\lambda_{3}^{n} \mathbb{P}_{3}
\end{aligned}
$$
\]

Mathematica supplies explicit descriptions of the $\mathbb{P}$-matrices that can be written

$$
\begin{aligned}
& \mathbb{P}_{1}=D_{1}^{-1}\left(\begin{array}{ccc}
\sigma & \sigma & \sigma \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \\
& \mathbb{P}_{2}=D_{2}^{-1}\left(\begin{array}{ccc}
\xi+1-2 \sigma & -(\xi+1) \sigma & 2 \sigma^{2} \\
2 \sigma & (\xi-1) \sigma & \frac{1}{2}(\xi-1)^{2} \sigma \\
-(\xi+1) & 2 \sigma & (\xi-1) \sigma
\end{array}\right) \\
& \mathbb{P}_{3}=D_{3}^{-1}\left(\begin{array}{ccc}
\xi-1+2 \sigma & -(\xi-1) \sigma & -2 \sigma^{2} \\
-2 \sigma & (\xi+1) \sigma & -\frac{1}{2}(\xi+1)^{2} \sigma \\
-(\xi-1) & -2 \sigma & (\xi+1) \sigma
\end{array}\right)
\end{aligned}
$$

with ${ }^{4}$

$$
\xi \equiv \sqrt{1-4 \sigma}
$$

and

$$
\left.\begin{array}{l}
D_{1} \equiv 2+\sigma  \tag{7}\\
D_{2} \equiv \xi(1+2 \sigma)-(4 \sigma-1) \\
D_{3} \equiv \xi(1+2 \sigma)+(4 \sigma-1)
\end{array}\right\}
$$

Returning with this information to (5), we have

$$
\begin{equation*}
\boldsymbol{a}_{n+1}=\left\{\sum_{k=0}^{n} \lambda_{1}^{k} \mathbb{P}_{1}+\sum_{k=0}^{n} \lambda_{2}^{k} \mathbb{P}_{2}+\sum_{k=0}^{n} \lambda_{3}^{k} \mathbb{P}_{3}\right\} \boldsymbol{a}_{1} \tag{8}
\end{equation*}
$$

Typical low-order results

$$
\begin{array}{ll}
\boldsymbol{a}_{5}=\left(\begin{array}{c}
1+\sigma \\
2 \\
2-\sigma
\end{array}\right) & \boldsymbol{a}_{6}=\left(\begin{array}{c}
1+2 \sigma-\sigma^{2} \\
3-2 \sigma+\sigma^{2} \\
2
\end{array}\right) \\
\boldsymbol{a}_{7}=\left(\begin{array}{c}
1+2 \sigma \\
3-\sigma^{2} \\
3-2 \sigma+\sigma^{2}
\end{array}\right) & \boldsymbol{a}_{8}=\left(\begin{array}{c}
1+3 \sigma-2 \sigma^{2}+\sigma^{3} \\
4-3 \sigma+3 \sigma^{2}-\sigma^{3} \\
3-\sigma^{2}
\end{array}\right)
\end{array}
$$

suggest that quite generally

$$
\sum \text { elements of } \boldsymbol{a}_{n}=n
$$

[^3]For large $n$ we have

$$
\begin{aligned}
\boldsymbol{a}_{n+1} & \sim\left\{n \mathbb{P}_{1}+\frac{1}{1-\lambda_{2}} \mathbb{P}_{2}+\frac{1}{1-\lambda_{3}} \mathbb{P}_{3}\right\} \boldsymbol{a}_{1} \\
& =\left\{n \mathbb{P}_{1}+\frac{2}{3-\xi} \mathbb{P}_{2}+\frac{2}{3+\xi} \mathbb{P}_{3}\right\} \boldsymbol{a}_{1} \\
& =\frac{n}{2+\sigma}\left(\begin{array}{l}
\sigma \\
1 \\
1
\end{array}\right)+\frac{1}{(2+\sigma)^{2}}\left(\begin{array}{c}
4-\sigma \\
\sigma-1 \\
-3
\end{array}\right)
\end{aligned}
$$

giving

$$
\left(\begin{array}{l}
a_{n+1}  \tag{9}\\
b_{n+1} \\
c_{n+1}
\end{array}\right) \sim \mathcal{D}^{-1}\left(\begin{array}{c}
(4-\sigma)+n(2+\sigma) \sigma \\
(\sigma-1)+n(2+\sigma) \\
(-3)+n(2+\sigma)
\end{array}\right)
$$

where again $\sigma=1-(x+y+z)+(x y+y z+z x)=x y z+X Y Z$ and where now

$$
\begin{equation*}
\mathcal{D}=(2+\sigma)^{2}=[3-(x+y+z)+(x y+y z+z x)]^{2} \tag{10}
\end{equation*}
$$

Our objective - as posed by Ray and sharpened by (3) - is to evaluate

$$
\begin{equation*}
S_{n}(x, y, z)=\left(\boldsymbol{e}_{0},\left\{\boldsymbol{w}+a_{n} \boldsymbol{G}_{1}+b_{n} \boldsymbol{G}_{2}+c_{n} \boldsymbol{G}_{3}\right\}\right) \tag{11}
\end{equation*}
$$

With the coefficients $\left\{a_{n}, b_{n}, c_{n}\right\}$ now in hand, we look to the central elements of the basic $\boldsymbol{G}$-vectors $\left\{\boldsymbol{G}_{1}, \boldsymbol{G}_{2}, \boldsymbol{G}_{3}\right\}$. Working with Mathematica's assistance from

$$
\begin{aligned}
\boldsymbol{G}_{1} & =\mathbb{D} \boldsymbol{w}-\boldsymbol{w} \\
\boldsymbol{G}_{2} & =\mathbb{D} \boldsymbol{G}_{1} \\
\boldsymbol{G}_{3} & =\mathbb{D} \boldsymbol{G}_{2}
\end{aligned}
$$

we obtain

$$
\boldsymbol{G}_{1}=\left(\begin{array}{c}
\vdots \\
-1+2 z \\
-1+2 y \\
-1+2 x \\
-1+2 z \\
-1+2 y \\
\vdots
\end{array}\right), \quad \boldsymbol{G}_{2}=\left(\begin{array}{c}
\vdots \\
-1+2 y+2 z(x-y) \\
-1+2 x+2 y(z-x) \\
-1+2 z+2 x(y-z) \\
-1+2 y+2 z(x-y) \\
-1+2 x+2 y(z-x) \\
\vdots
\end{array}\right)
$$

$$
\boldsymbol{G}_{3}=\left(\begin{array}{c}
\vdots \\
-1+2 x-2(x y-y z+z x)+2 z^{2}(1-x-y)+4 x y z \\
-1+2 z-2(z x-x y-y z)+2 y^{2}(1-z-x)+4 x y z \\
-1+2 y-2(y z-z x+x y)+2 x^{2}(1-y-z)+4 x y z \\
-1+2 x-2(x y-y z+z x)+2 z^{2}(1-x-y)+4 x y z \\
-1+2 z-2(z x-x y-y z)+2 y^{2}(1-z-x)+4 x y z \\
\vdots
\end{array}\right)
$$

all of which are seen to be manifectly 3 -periodic and to possess the property that as one moves from element to next-higher element the variables $\{x, y, z\}$ advance in cyclic progression. These persistent patterns, inherited from the structure of $\mathbb{C}$, inspire confidence in the accuracy of our results, but because of the special structure of the initial state $\boldsymbol{e}_{0}$ it is only the central elementsshown in blue - that are relevant to the construction of $S_{n}(x, y, z)$. Returning with $\left(\boldsymbol{e}_{0}, \boldsymbol{w}\right)=0$ and

$$
\begin{align*}
& \left(\boldsymbol{e}_{0}, \mathbb{G}_{1}\right) \equiv G_{10}=-1+2 x \\
& \left(\boldsymbol{e}_{0}, \mathbb{G}_{2}\right) \equiv G_{20}=-1+2 z+2 x(y-z)  \tag{12}\\
& \left(\boldsymbol{e}_{0}, \mathbb{G}_{3}\right) \equiv G_{30}=-1+2 y-2(y z-z x+x y)+2 x^{2}(1-y-z)+4 x y z
\end{align*}
$$

to (11), we obtain finally

$$
\begin{equation*}
S_{n}(x, y, z)=\left(\boldsymbol{e}_{0}, \mathbb{D}^{n} \boldsymbol{w}\right)=a_{n} G_{10}+b_{n} G_{20}+c_{n} G_{30} \tag{13.1}
\end{equation*}
$$

with

$$
\boldsymbol{a}_{n} \equiv\left(\begin{array}{l}
a_{n}  \tag{13.2}\\
b_{n} \\
c_{n}
\end{array}\right)=\left\{n \mathbb{P}_{1}+\sum_{k=0}^{n-1} \lambda_{2}^{k} \mathbb{P}_{2}+\sum_{k=0}^{n-1} \lambda_{3}^{k} \mathbb{P}_{3}\right\}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

where the $\sigma$ that enters into the construction (6) of $\lambda_{2}(\sigma)$ and $\lambda_{3}(\sigma)$ was defined

$$
\sigma=1-(x+y+z)+(x y+y z+z x)=x y z+X Y Z
$$

and where the projection matrices $\left\{\mathbb{P}_{1}, \mathbb{P}_{2}, \mathbb{P}_{3}\right\}$ were defined on page 7 . For large $n$ equations (13) give

$$
\begin{equation*}
S_{n}(x, y, z) \sim n \mathcal{P}(x, y, z)+\mathcal{Q}(x, y, z) \tag{14.1}
\end{equation*}
$$

with

$$
\begin{align*}
\mathcal{P}(x, y, z) & =\mathcal{D}^{-1}(2+\sigma)\left[\sigma G_{01}+G_{20}+G_{30}\right] \\
\mathcal{Q}(x, y, z) & =\mathcal{D}^{-1}\left[(4-\sigma) G_{10}+(\sigma-1) G_{20}-3 G_{30}\right] \tag{14.2}
\end{align*}
$$

where

$$
\mathcal{D}=(2+\sigma)^{2}=[3-(x+y+z)+(x y+y z+z x)]^{2}
$$

Accuracy checks, and some instances of "polynomial similarity." We possess now two distinct ways to approach the evaluation of $S_{n}(x, y, z)$. The naive approach (which I employed in some earlier Mathematica-based work) proceeds from

$$
S_{n}(x, y, z)=\left(\boldsymbol{w}, \mathbb{C}^{n} \boldsymbol{e}_{0}\right)
$$

so involves raising large matrices ${ }^{5}$ to high powers. This works well enough for small $n$, but at some point raising large matrices to high powers becomes unfeasible. The method supplies

$$
\begin{aligned}
S_{n}(x, y, z) & =\text { homogeneous polynomial of degree } n \text { in }\{x, X, y, Y, z, Z\} \\
& =\text { inhomogeneous polynomial of degree } n \text { in }\{x, y, z\}
\end{aligned}
$$

but provides no insight into the structure of those complicated polynomials. Ray's method, on the other hand, proceeds from

$$
S_{n}(x, y, z)=\left(\boldsymbol{e}_{0}, \mathbb{D}^{n} \boldsymbol{w}\right) \quad: \quad \mathbb{D}=\mathbb{C}^{\top}
$$

to formulae (13) that involve no matrix multiplication at all, that supply precise results in every order and that yield quite a simple result (14) in asymptotic approximation. Mathematica reports that the two methods produce identical results

$$
\begin{aligned}
& S_{4}(x, y, z)=-4+4 x+2 y-2 x y+2 x^{2} y+2 x y^{2}-2 x^{2} y^{2}+2 z-2 x^{2} z+4 x y z-2 x y^{2} z \\
& +2 z^{2}-4 x z^{2}+2 x^{2} z^{2}-2 y z^{2}+2 x y z^{2} \\
& S_{5}(x, y, z)=-5+4 x+2 x^{3}+2 y+2 x y-4 x^{3} y+2 y^{2}-4 x y^{2}+2 x^{3} y^{2}+4 z-4 x z+4 x^{2} z \\
& -4 x^{3} z+2 x y z-2 x^{2} y z+4 x^{3} y z-4 y^{2} z+8 x y^{2} z-2 x^{2} y^{2} z+2 x z^{2}-4 x^{2} z^{2} \\
& +2 x^{3} z^{2}-2 y z^{2}+4 x y z^{2}-2 x^{2} y z^{2}+2 y^{2} z^{2}-4 x y^{2} z^{2} \\
& S_{6}(x, y, z)=-6+4 x+4 x^{2}-2 x^{3}+4 y-8 x^{2} y+6 x^{3} y-2 x y^{2}+8 x^{2} y^{2}-6 x^{3} y^{2}+2 x y^{3}-4 x^{2} y^{3} \\
& +2 x^{3} y^{3}+4 z-6 x^{2} z+2 x^{3} z-4 y z+8 x y z+8 x^{2} y z-4 x^{3} y z+2 y^{2} z+2 x y^{2} z \\
& -10 x^{2} y^{2} z+2 x^{3} y^{2} z-4 x y^{3} z+4 x^{2} y^{3} z+2 x z^{2}-4 x^{2} z^{2}+2 x^{3} z^{2}+4 y z^{2} \\
& -10 x y z^{2}+8 x^{2} y z^{2}-2 x^{3} y z^{2}-4 y^{2} z^{2}+2 x y^{2} z^{2}+2 x y^{3} z^{2}+2 z^{3}-6 x z^{3} \\
& +6 x^{2} z^{3}-2 x^{3} z^{3}-4 y z^{3}+8 x y z^{3}-4 x^{2} y z^{3}+2 y^{2} z^{3}-2 x y^{2} z^{3} \\
& S_{7}(x, y, z)=-7+6 x+2 x^{2}+4 y-4 x y+6 x^{2} y-6 x^{4} y+8 x y^{2}-14 x^{2} y^{2}+6 x^{4} y^{2}+2 y^{3}-8 x y^{3} \\
& +8 x^{2} y^{3}-2 x^{4} y^{3}+4 z-6 x^{2} z+8 x^{3} z-6 x^{4} z+8 x y z+2 x^{2} y z-16 x^{3} y z \\
& +12 x^{4} y z+2 y^{2} z-20 x y^{2} z+20 x^{2} y^{2} z+8 x^{3} y^{2} z-6 x^{4} y^{2} z-6 y^{3} z+20 x y^{3} z \\
& -14 x^{2} y^{3} z+4 z^{2}-12 x z^{2}+18 x^{2} z^{2}-16 x^{3} z^{2}+6 x^{4} z^{2}-6 y z^{2}+12 x y z^{2} \\
& -16 x^{2} y z^{2}+16 x^{3} y z^{2}-6 x^{4} y z^{2}-4 y^{2} z^{2}+20 x y^{2} z^{2}-18 x^{2} y^{2} z^{2}+6 y^{3} z^{2} \\
& -16 x y^{3} z^{2}+6 x^{2} y^{3} z^{2}-2 z^{3}+8 x z^{3}-12 x^{2} z^{3}+8 x^{3} z^{3}-2 x^{4} z^{3}+2 y z^{3} \\
& -4 x y z^{3}+2 x^{2} y z^{3}+2 y^{2} z^{3}-8 x y^{2} z^{3}+6 x^{2} y^{2} z^{3}-2 y^{3} z^{3}+4 x y^{3} z^{3}
\end{aligned}
$$

through order $n=7$. We expect to have
${ }^{5}$ To avoid "boundary errors" in the naive evaluation of $S_{n}(x, y, z)$ the $\nu \times \nu$ matrix $\mathbb{C}$ must have dimension not less than $2 n+1$. Working with $\nu=15 \mathrm{I}$ could by that method ascend only to order 7 , by which point my typographic patience had already been pressed to its limit.

$$
\begin{align*}
& S_{n}(0,0,0,0)=-n \\
& S_{n}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=0  \tag{15}\\
& S_{n}(1,1,1,1)=+n
\end{align*}
$$

and are informed by Mathematica that each of the results reported above conforms to that expectation. That the two methods yield results thatincreasing complicated though they rapidly become - are in precise agreement through order 7 , and that in those cases they conform to (15), is fairly convincing evidence that our results are accurate.

In the asymptotic limit we by (14) have

$$
S_{n}(x, y, z) \sim S_{n, \infty}(x, y, z)=n \mathcal{P}(x, y, z)+\mathcal{Q}(x, y, z) \sim n \mathcal{P}(x, y, z)
$$

where

$$
\begin{aligned}
\mathcal{P}(x, y, z)= & \mathcal{D}^{-1} \mathfrak{p} \quad \text { where } \quad \mathfrak{p}(x, y, z)=(2+\sigma)\left[\sigma G_{10}+G_{20}+G_{30}\right] \\
\mathcal{L}(x, y, z)= & \mathcal{D}^{-1} \mathfrak{q} \quad \text { where } \quad \mathfrak{q}(x, y, z)=(4-\sigma) G_{10}+(\sigma-1) G_{20}-3 G_{30} \\
& \mathcal{D}(x, y, z)=(2+\sigma)^{2}
\end{aligned}
$$

when spelled out in explicit detail read

$$
\begin{aligned}
\mathfrak{p}(x, y, z)= & -9+12 x-3 x^{2}+12 y-18 x y+6 x^{2} y-3 y^{2}+6 x y^{2}-3 x^{2} y^{2}+12 z-18 x z+6 x^{2} z \\
& -18 y z+36 x y z-12 x^{2} y z+6 y^{2} z-12 x y^{2} z+6 x^{2} y^{2} z-3 z^{2}+6 x z^{2}-3 x^{2} z^{2} \\
& +6 y z^{2}-12 x y z^{2}+6 x^{2} y z^{2}-3 y^{2} z^{2}+6 x y^{2} z^{2} \\
\mathfrak{q}(x, y, z)= & 6 x-4 x^{2}-6 y+8 x y+2 x^{2} y-2 x y^{2}+2 x^{2} y^{2}-6 x z+6 x^{2} z+4 y z-12 x y z \\
& +2 x y^{2} z-2 z^{2}+4 x z^{2}-2 x^{2} z^{2}+2 y z^{2}-2 x y z^{2} \\
\mathcal{D}(x, y, z)= & 9-6 x+x^{2}-6 y+8 x y-2 x^{2} y+y^{2}-2 x y^{2}+x^{2} y^{2}-6 z+8 x z-2 x^{2} z+8 y z \\
& -6 x y z+2 x^{2} y z-2 y^{2} z+2 x y^{2} z+z^{2}-2 x z^{2}+x^{2} z^{2}-2 y z^{2}+2 x y z^{2}+y^{2} z^{2}
\end{aligned}
$$

giving

$$
\begin{equation*}
S_{n, \infty}(x, y, z)=\frac{n\left(5^{\text {th }} \text { order }\right)+\left(4^{\text {th }} \text { order }\right)}{4^{\text {th }} \text { order }} \tag{16}
\end{equation*}
$$

It is insructive to look to the special case $x=y=z$ (i.e., to the simplest unbalanced walk). In that case $G_{10}=G_{20}=G_{30}=2 x-1, \sigma=1-3 x+3 x^{2}$ and

$$
\begin{aligned}
\mathfrak{p}(x, x, x) & =-9+36 x-63 x^{2}+72 x^{3}-45 x^{4}+18 x^{5} \\
\mathfrak{q}(x, x, x) & =0 \\
D(x, x, x) & =9-18 x+27 x^{2}-18 x^{3}+9 x^{4}
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
S_{n, \infty}(x, x, x)=n(2 x-1) \tag{17}
\end{equation*}
$$

- exactly as one might have anticipated. For consider an ensemble of walkers, each of whom advances one step with probability $x$, retreats one step with probability $X=1-x$. The mean single-step advance is

$$
S_{1}(x)=x-X=2 x-1
$$

so the mean $n$-step advance is

$$
S_{n}(x)=n S_{1}(x)=n(2 n-1)
$$

-in precise agreement with (17). The asymptotic formula has in this instance been found to be exact for all $n$.

Walkers who advance by the simple site-independent rule just considered can expect to "break even" (make no net $n$-step progress) if $S_{n}(x)=0$, which entails $x=\frac{1}{2}$. The $n$-step beak-even conditions for walkers who advance by the site-dependent rule $\mathbb{C}_{x, y, z}$ read

$$
\begin{equation*}
S_{n}(x, y, z)=0 \tag{18}
\end{equation*}
$$

—each of which inscribes a "null surface" within the unit cube in $\{x, y, z\}$-space. When plotted, ${ }^{6}$ those surfaces are found to resemble one another ever more closely as $n$ ascends, and for $n$ greater than about 10 to become virtually indistinguishable from the surface defined

$$
S_{n, \infty}(x, y, z) \sim n \mathcal{P}(x, y, z)=0
$$

Which is a little perplexing, since the multinomials $S_{n}(x, y, z)$-of ascending high order - do not at all resemble one another, and $\mathcal{P}(x, y, z)$ is a ratio of low order multinomials. The mystery would disappear if it were the case that

$$
S_{n+1}(x, y, z)=S_{n}(x, y, z)+\text { higher order terms }
$$

but that is manifestly not the case. I will return later to discussion of that "polynomial similarity problem."

Parrondo's paradoxical game. Juan Parrondo's discovery derives from his interest in "Brownian ratchets," Smoluchowski's realization-popularized by Feynman - of Maxwell's Demon, but as a matter of expository convenience adopted game-theoretic language when he first reported his paradoxical result. ${ }^{7}$ I continue in that tradition.

Player A, who by flip of a loaded coin places a penny on the table with probability $x$, removes a penny with probability $X=1-x$. Player A, as recently remarked, can expect to break even if $x=\frac{1}{2}$. Parrondo's player B uses one or the other of two coins, depending upon whether or not the money on the table is $2 \bmod 3$. When that is the case player B deposits a penny with probability $z$ (withdraws one with probability $Z=1-z$ ), but in all other cases he deposits with probability $y$, withdraws with probability $Y=1-y$. To discover his long term prospects, we return to (14) and set $x=y$; we look, in other words, to
${ }^{6}$ In Mathematica v7 use the command

$$
\text { ContourPlot3D }\left[S_{n}(x, y, z)==0,\{x, 0,1\},\{y, 0,1\},\{z, 0,1\}\right]
$$

Such figures are supplied in a companion notebook.
7 The seminal document is a slide entitled "How to cheat a bad mathematician" that he used to illustrate a lecture entitled "Efficiency of Brownian motors" which he presented at a Complexity and Chaos Workshop that took place in Torino, Italy in July, 1996. See his homepage at
http://seneca.fis.ucm.es/parr/

$$
\begin{equation*}
\mathcal{P}(y, y, z)=0 \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathcal{P}(y, y, z)=\mathcal{D}^{-1}\{ -9+24 y-24 y^{2}+12 y^{3}-3 y^{4}+12 z-36 y z+48 y^{2} z \\
&\left.-24 y^{3} z+6 y^{4} z-3 z^{2}+12 y z^{2}-18 y^{2} z^{2}+12 y^{3} z^{2}\right\} \\
& \mathcal{D}=9-12 y+10 y^{2}-4 y^{3}+y^{4}-6 z+16 y z-10 y^{2} z \\
&-10 y^{2} z+4 y^{3} z+z^{2}-4 y z^{2}+4 y^{2} z^{2}
\end{aligned}
$$

The asymptotic break-even condition (18) inscribes "null curve" within the unit square in $\{y, z\}$-space: see the following figure:

Figure 2 goes here

Figure 2: The null curve derived from setting $\mathcal{P}(y, y, z)=0$. The $B$ player wins only if $\{y, z\}$ falls above the curve. In the figure, $y \in[0,1]$ runs $\rightarrow, z \in[0,1]$ runs $\uparrow$.

Suppose now that players A and B move (deposit or withdraw pennies) alternately. Player A's move is generated by

$$
\mathbb{A}=\mathbb{C}_{a, a, a}
$$

while player B's move is generated by

$$
\mathbb{B}=\mathbb{C}_{y, y, z}
$$

The composite result of such a pair of moves is generated by $\mathbb{S}=\mathbb{A} \mathbb{B}$ (which is Markovian since all products of Markov matrices are Marcovian). Coincidences (such as $x=y$ ) tend to obscure patterns, so we look to the more general

4-parameter case that results from setting $\mathbb{B}=\mathbb{C}_{x, y, z}$ and will set $x=y$ only at the end of the argument.

Looking only to the illustrative central secti of a 15 -dimensional $\mathbb{S}$-matrix, we have

$$
\mathbb{S}=\left(\begin{array}{ccccccc}
\cdots & 0 & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 0 & 0 & \cdots \\
\cdots & a z & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & a y & 0 & 0 & 0 & \cdots \\
\cdots & A z+a Z & 0 & a x & 0 & 0 & \cdots \\
\cdots & 0 & A y+a Y & 0 & a z & 0 & \cdots \\
\cdots & A Z & 0 & A x+a X & 0 & a y & \cdots \\
\cdots & 0 & A Y & 0 & A z+a Z & 0 & \cdots \\
\cdots & 0 & 0 & A X & 0 & A y+a Y & \cdots \\
\cdots & 0 & 0 & 0 & A Z & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 0 & A Y & \cdots \\
\cdots & 0 & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 0 & 0 & \cdots \\
\cdots & 0 & 0 & 0 & 0 & 0 & \cdots
\end{array}\right)
$$

We verify that the column elements sum to unity, and note the 3-periodicity of $\mathbb{S}$. The matrices $\mathbb{A}$ and $\mathbb{B}$ refer to nearest-neighbor walks with stand-in-place excluded, so have 0 on their diagonals. But with a second step such a walker can return to place, which accounts for the non-zero elements on the diagonal of $\mathbb{S}$. By computation

$$
\begin{aligned}
\mathbb{T} \boldsymbol{w}=\boldsymbol{w} & +2(a+x-1) \boldsymbol{F}_{1} \\
& +2(a+y-1) \boldsymbol{F}_{2} \quad: \quad \mathbb{T}=\mathbb{S}^{\top} \\
& +2(a+z-1) \boldsymbol{F}_{3}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbb{T} \boldsymbol{F}_{1}=(A x+a X) \boldsymbol{F}_{1}+a y \boldsymbol{F}_{2}+A Z \boldsymbol{F}_{3} \\
& \mathbb{T} \boldsymbol{F}_{2}=A X \boldsymbol{F}_{1}+(A y+a Y) \boldsymbol{F}_{2}+a z \boldsymbol{F}_{3} \\
& \mathbb{T} \boldsymbol{F}_{3}=a x \boldsymbol{F}_{1}+A Y \boldsymbol{F}_{2}+(A z+a Z) \boldsymbol{F}_{3}
\end{aligned}
$$

which in notation that mimics that of pages 2 and 3 become

$$
\begin{aligned}
\mathbb{T} \boldsymbol{w}=\boldsymbol{w}+\boldsymbol{G}_{1} & \\
\boldsymbol{G}_{1} & =f(x) \boldsymbol{F}_{1}+f(y) \boldsymbol{F}_{2}+f(z) \boldsymbol{F}_{3} \\
& =\alpha_{1} \boldsymbol{F}_{1}+\beta_{1} \boldsymbol{F}_{2}+\gamma_{1} \boldsymbol{F}_{3}
\end{aligned}
$$

with $f(u)=2(a+u-1)=(a-A)+(u-U)$ and

$$
\begin{aligned}
& \mathbb{T} \boldsymbol{F}_{1}=g_{1}(x) \boldsymbol{F}_{1}+g_{2}(y) \boldsymbol{F}_{2}+g_{3}(z) \boldsymbol{F}_{3} \\
& \mathbb{T} \boldsymbol{F}_{2}=g_{3}(x) \boldsymbol{F}_{1}+g_{1}(y) \boldsymbol{F}_{2}+g_{2}(z) \boldsymbol{F}_{3} \\
& \mathbb{T} \boldsymbol{F}_{3}=g_{2}(x) \boldsymbol{F}_{1}+g_{3}(y) \boldsymbol{F}_{2}+g_{1}(z) \boldsymbol{F}_{3}
\end{aligned}
$$

where

$$
\begin{array}{ll}
g_{1}(u)=a+u-2 a u & : \\
g_{2}(u)=a u & : \quad \text { abbreviated } g_{1, u} \\
g_{3}(u)=1-a-u+a u & : \quad \text { abbreviated } g_{2, u} \\
\text { abbreviated } g_{3, u}
\end{array}
$$

are seen to sum to unity.
We are led now as we were on pages $3-5$ (except that our symbols bear now different meanings) to write

$$
\begin{aligned}
\boldsymbol{G}_{2}=\alpha_{2} \boldsymbol{F}_{1}+\beta_{2} \boldsymbol{F}_{2}+\gamma_{2} \boldsymbol{F}_{3}=\mathbb{T} \boldsymbol{G}_{1}= & \alpha_{1} \cdot\left\{g_{1, x} \boldsymbol{F}_{1}+g_{2, y} \boldsymbol{F}_{2}+g_{3, z} \boldsymbol{F}_{3}\right\} \\
& +\beta_{1} \cdot\left\{g_{3, x} \boldsymbol{F}_{1}+g_{1, y} \boldsymbol{F}_{2}+g_{2, z} \boldsymbol{F}_{3}\right\} \\
& +\gamma_{1} \cdot\left\{g_{2, x} \boldsymbol{F}_{1}+g_{3, y} \boldsymbol{F}_{2}+g_{1, z} \boldsymbol{F}_{3}\right\}
\end{aligned}
$$

giving

$$
\left(\begin{array}{l}
\alpha_{2} \\
\beta_{2} \\
\gamma_{2}
\end{array}\right)=\mathbb{G}\left(\begin{array}{c}
\alpha_{1} \\
\beta_{1} \\
\gamma_{1}
\end{array}\right) \quad \text { with } \quad \mathbb{G}=\left(\begin{array}{lll}
g_{1, x} & g_{3, x} & g_{2, x} \\
g_{2, y} & g_{1, y} & g_{3, y} \\
g_{3, z} & g_{2, z} & g_{1, z}
\end{array}\right)
$$

so again the $\mathbb{F}$-coordinates of the $\infty$-dimensional $\mathbb{G}$-vectors increment by the rule

$$
\boldsymbol{g}_{2}=\mathbb{G} \boldsymbol{g}_{1} \quad \Longrightarrow \quad \boldsymbol{g}_{n}=\mathbb{G}^{n-1} \boldsymbol{g}_{1}
$$

The matrix $\mathbb{G}$ is $3 \times 3$, so again we have

$$
\begin{aligned}
\mathbb{G}^{3} & =\frac{1}{6}\left(T_{1}^{3}-3 T_{1} T_{2}+2 T_{3}\right) \mathbb{I}-\frac{1}{2}\left(T_{1}^{2}-T_{2}\right) \mathbb{G}+T_{1} \mathbb{G}^{2} \\
& \equiv q_{1} \mathbb{I}+q_{2} \mathbb{G}+q_{3} \mathbb{G}^{2}
\end{aligned}
$$

where by computation the coefficients are given now by

$$
\begin{aligned}
& q_{1}=\left[1-3 a+3 a^{2}\right][1-(x+y+z)+(x y+y z+z x)] \\
& q_{2}=1-q_{1}-q_{3} \\
& q_{3}=3 a-(2 a-1)(x+y+z)
\end{aligned}
$$

which clearly sum to unity. Finally, we have

$$
\boldsymbol{g}_{n+1}=\sum_{k=0}^{n} \mathbb{Z}^{k} \boldsymbol{g}_{1} \quad \text { with } \quad \mathbb{Z}=\left(\begin{array}{lll}
0 & 0 & q_{1} \\
1 & 0 & q_{2} \\
0 & 1 & q_{3}
\end{array}\right), \quad \boldsymbol{g}_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

by precisely the argument which gave (5), but with this important difference: the matrix $\mathbb{Z}$ is not Markovian because its third column is not stochastic. Its elements sum to unity, but do not all fall within the unit interval. I have been unable to develop a clean analytical demonstration of the latter point, but can supply persuasive statistical evidence. Assigning random unit interval values to $\{a, x, y, z\}$ I found after 100 trials that in every instance $q_{1} \in[0,1],{ }^{8} q_{2}<0$

[^4]and $q_{3}>1$. Looking to the statistics of 10,000 such trials, I found
\[

$$
\begin{aligned}
& \text { mean } q_{1}=0.125, \quad \Delta q_{1}=0.097 \\
& \text { mean } q_{2}=-0.624, \quad \Delta q_{2}=0.305 \\
& \text { mean } q_{3}=\frac{1.498}{0.999}, \quad \Delta q_{1}=0.288
\end{aligned}
$$
\]

So $\mathbb{Z}$ is non-Markovian. But-surprisingly/fortunately-the spectral properties of $\mathbb{Z}$ do mimic those of a Markov matrix: examination of 100 randomized trials showed that $(i)$ in every case the leading eigenvalue was unity; (ii) in every case $\left|\lambda_{2}\right|<1$ and $\left|\lambda_{3}\right|<1$; (iii) in about $40 \%$ of cases $\lambda_{2}$ and $\lambda_{3}$ were both real (and in all other cases complex conjugates of one another).

If we sought exact description of $S_{n}(a, x, y, z)$ we would have to construct an exact evaluation of $\mathbb{Z}^{n-1}$, so would at this point undertake to produce the spectral decomposition of $\mathbb{Z}$. But we have interest only in the form assumed by $S_{n}(a, x, y, z)$ when $n$ is sufficiently large we can spare ourselves that labor, exploiting what we know about the spectrum of $\mathbb{Z}$ to write

$$
\mathbb{Z}^{n-1} \sim n \mathbb{P}_{1}
$$

where projects onto the leading eigenvector of $\mathbb{Z}$ :

$$
\boldsymbol{h}=\frac{1}{2+q_{1}-q_{3}}\left(\begin{array}{c}
q_{1} \\
1-q_{3} \\
1
\end{array}\right) \equiv\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right) \quad: \quad h_{1}+h_{2}+h_{3}=1
$$

We then have ${ }^{9}$

$$
\lim _{n \rightarrow \infty} \mathbb{Z}^{n} \boldsymbol{h}_{0}=\boldsymbol{h} \quad: \quad \text { all stochastic } \boldsymbol{h}_{0}
$$

from which it follows in particular that in asymptotic approximation

$$
\boldsymbol{g}_{n}=n \boldsymbol{h}
$$

9 These results are stranger than they appear, as I demonstrate: one random parameter assignment produced

$$
\mathbb{Z}=\left(\begin{array}{rrr}
0 & 0 & 0.52701 \\
1 & 0 & -1.98017 \\
0 & 1 & 2.45309
\end{array}\right)
$$

which gives

$$
\mathbb{Z}^{50}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{r}
7.1248 \\
-19.6424 \\
13.5176
\end{array}\right) \equiv \boldsymbol{h}_{50} \quad \approx \boldsymbol{h}=\left(\begin{array}{r}
7.1248 \\
-19.6425 \\
13.5177
\end{array}\right)
$$

The vector $\boldsymbol{h}_{50}$ is clearly not stochastic, though its elements do sum to 1.0000 .

We conclude that in asymptotic approximation

$$
\begin{aligned}
& S_{n}(a, x, y, z)=n \mathcal{P}(a, x, y, z) \\
& \quad \mathcal{P}(a, x, y, z)=h_{1} G_{10}+h_{2} G_{20}+h_{3} G_{30}
\end{aligned}
$$

where by calculation (see again pages $8-9$ )

$$
\begin{aligned}
G_{10}= & -2+2 a+2 x \\
G_{20}= & -6+6 a+4 x+2 a x+2 x^{2}-4 a x^{2}+2 y-2 a y-2 x y+2 a x y+2 a x z \\
G_{30}= & -10+10 a+4 x+4 a x+2 a^{2} x+4 x^{2}-2 a x^{2}-10 a^{2} x^{2}+2 x^{3}-8 a x^{3}+8 a^{2} x^{3}+4 y-4 a^{2} y \\
& -2 x y-4 a x y+6 a^{2} x y-2 x^{2} y+4 a x^{2} y-2 a^{2} x^{2} y+2 y^{2}-6 a y^{2}+4 a^{2} y^{2}-2 x y^{2}+6 a x y^{2} \\
& -4 a^{2} x y^{2}+2 z-4 a z+2 a^{2} z-2 x z+8 a x z+2 a^{2} x z-2 a^{2} x^{2} z-2 y z+4 a y z-2 a^{2} y z \\
& +2 x y z-4 a x y z+4 a^{2} x y z+2 a x z^{2}-4 a^{2} x z^{2}
\end{aligned}
$$

Writing

$$
\begin{array}{lll}
h_{1}=\mathcal{D}^{-1} k_{1} & \text { with } & k_{1}=q_{1} \\
h_{2}=\mathcal{D}^{-1} k_{2} & \text { with } & k_{2}=1-q_{3} \\
h_{3}=\mathcal{D}^{-1} k_{3} & \text { with } & k_{3}=1
\end{array}
$$

we have finally

$$
\begin{aligned}
\mathcal{P}(a, x, y, z)= & \mathcal{D}^{-1}\left[k_{1} G_{10}+k_{2} G_{20}+k_{3} G_{30}\right] \equiv \mathcal{D}^{-1} \mathcal{R}(a, x, y, z) \\
& \mathcal{D}=2+q_{1}-q_{3}
\end{aligned}
$$

The equation $\mathcal{R}(a, x, y, z)=0$ inscribes a null hypersurface within the 4 -cube, of which we can only plot 3 -dimensional sections at (say) selected values of $a$. Parrondo, however, restricts his interest to the SPECIAL CASE that results from setting $x=y$, and the surface $\mathcal{R}(a, y, y, z)=0$ does admit of graphic display. In that case the relevant expressions are, in fact, fairly easy to write out; we find

$$
\begin{aligned}
\mathcal{R}(a, y, y, z)= & -18+42 a-30 a^{2}+6 a^{3}+32 y-72 a y+52 a^{2} y-12 a^{3} y-14 y^{2}+30 a y^{2} \\
& -18 a^{2} y^{2}+6 a^{3} y^{2}+10 z-30 a z+26 a^{2} z-6 a^{3} z-16 y z+48 a y z-36 a^{2} y z \\
& +12 a^{3} y z+6 y^{2} z-18 a y^{2} z+18 a^{2} y^{2} z \\
\mathcal{D}(a, y, y, z)= & 2-6 a+3 a^{2}-4 y+10 a y-6 a^{2} y+y^{2}-3 a y^{2}+3 a^{2} y^{2} \\
& -2 z+5 a z-3 a^{2} z+2 y z-6 a y z+6 a^{2} y z
\end{aligned}
$$

which are again multinomials of orders 5 and 3 , respectively.
The naive construction of $S_{n}(a, z, y, z)$ requires-if boundary errors are to be avoided-that $\mathbb{S} \equiv \mathbb{A} \mathbb{B}$ be $\nu \times \nu$ with $\nu \geqslant 4 n+1$. The $\mathbb{S}$ of page 14 supplies

$$
\left(\boldsymbol{w}, \mathbb{S}^{n} \boldsymbol{e}_{0}\right)=\left\{\begin{array}{l}
\text { homogeneous multinomial of degree } 2 n \\
\text { in }\{a, x, y, z, A, X, Y, Z\}
\end{array}\right.
$$

Replacements of the form $U \rightarrow 1-u$ produce

$$
S_{n}(a, x, y, z)=\left\{\begin{array}{l}
\text { inhomogeneous multinomial of degree } \leqslant 2 n \\
\text { in }\{a, x, y, z\}
\end{array}\right.
$$

To ascend to order 7 I set $\nu=(4 \cdot 7+1)=29$, whereupon Mathematica supplied

$$
\begin{aligned}
& S_{7}(a, x, y, z)=\text { inhomogeneous sum of } 741 \text { terms } \\
& S_{7}(a, y, y, z)=\text { inhomogeneous sum of } 230 \text { terms }
\end{aligned}
$$

and also

$$
\begin{aligned}
& S_{7}(0,0,0,0)=-14 \\
& S_{7}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)=0 \\
& S_{7}(1,1,1,1)=+14
\end{aligned}
$$

... which (compare (15)) make intuitive good sense: a walker who with certainty advances/retreats one step with every step of a composite 2 -step move can expect to advance/retreat 14 steps in seven such moves, and to make no progress at all if the probabilities of advancing/retreating are at every step equal.


[^0]:    ${ }^{1}$ For a recent account of the old material to which I allude, see "Algorithm for the efficient evaluation of the trace of the inverse of a matrix" (1996), which was written to resolve a problem posed by Richard Crandall.

[^1]:    ${ }^{2}$ Use commands of the form
    Manipulate[Plot3D[f[x,y,z],\{x,0,1\},\{y,0,1\}],\{z,0,1,0.1\}]

[^2]:    ${ }^{3}$ See "Generalized spectral resolution and some of its applications" (27 April 2009).

[^3]:    ${ }^{4}$ In this notation $\lambda_{2}(\sigma)=+\frac{1}{2}(\xi-1), \lambda_{3}(\sigma)=-\frac{1}{2}(\xi+1)$.

[^4]:    ${ }^{8}$ In this instance the analytical demonstration is elementary.

